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A theoretical investigation of similarity solutions for interactive laminar boundary 
layers is presented. The questions of uniqueness and of the appearance of 
homogeneous eigensolutions are discussed. The similarity solutions yielding the 
asymptotic behaviour of the nonlinear triple-deck equations in the far field can be 
used either to improve the development of computational schemes or to check the 
accuracy of numerical results. A special similarity solution governed by a modified 
Falkner-Skan boundary-value problem determines the shape of a wall generating 
the largest possible deflection of a laminar boundary layer in supersonic flow if 
separation is to be avoided. Increasing the controlling parameter of this special 
pressure distribution (for both supersonic and subsonic flows) beyond a cutoff value 
leads to a global breakdown of the interacting laminar-boundary-layer approach 
which cannot be removed or avoided. 

1. Introduction 
This paper presents and discusses similarity solutions of the nonlinear triple-deck 

problem for supersonic and subsonic two-dimensional flows. The origins, theory and 
applications of triple-deck structures have been extensively reviewed (Stewartson 
1974, 1981 ; Smith 1982; Messiter 1983; Kluwick 1987) and so it seems sufficient to 
comment that perhaps the most significant aspect of triple-deck theory is that it 
governs the onset of external separation as well as describing some fundamental 
attached-flow problems. A number of recent studies deal with the still not fully 
known properties that arise for larger disturbances, particularly those yielding 
relatively large-scale separations and eddies. Of special interest in this context is the 
question whether a singularity terminates the triple-deck structure for increasing 
disturbances of the flow, cf. Smith & Khorrami (1991). Another class of recent 
investigations concerns the unsteady effects of surface-mounted obstacles on the 
boundary-layer flow over a surface, including instability and the transition to 
turbulence, cf. Bodonyi et al. (1989). 

In all these problems it is necessary to have a very accurate solution of the steady 
basic flow. For the development of a computational scheme it is helpful to know 
exactly the asymptotic properties of the field quantities far upstream and 
downstream. This asymptotic behaviour can directly be incorporated in the 
numerical formulation of the boundary conditions and/or it can be used as an 
accuracy check of the computational results. 

In this paper we study similarity solutions which describe the asymptotic 
behaviour of triple-deck flows along general power-law-profile contours. The question 
of existence and uniqueness of these solutions is investigated in connection with the 



132 Ph. Gittler 

possibility of the appearance of homogeneous eigensolutions. After discussion of 
some applications of the results we finally present a special similarity solution which 
is governed by a nonlinear boundary-value problem of the FalknerSkan type. As a 
special result we obtain the shape of a wall generating the largest possible deflection 
of a laminar boundary layer in supersonic flow or - corresponding to subsonic flow 
-the pressure distribution producing the sharpest pressure rise in the shortest 
distance without separation. 

2. Problem formulation 
It will be assumed that the flow structure has the triple-deck form introduced by 

Stewartson (1969), Neiland (1969) and Messiter (1970) and that the interaction 
process is caused by a distortion of the surface y = F(x) and/or by an incoming 
wave in supersonic flow). After application of Prandtl’s transposition theorem 
(y + y +F(x), v + v + u dF/dx) the governing lower-deck equations expressed in terms 
of scaled variables are 

with 

Here (5, y) are the streamwise and transverse Cartesian coordinates, respectively, 
(u, v)  are the corresponding velocity components, and -A(x) is the displacement 
increment of the boundary layer due to the interaction process. In supersonic flow 
the induced pressure p(x), the displacement -A(x) and the body shape F ( x )  satisfy 
Ackeret ’s relationship 

d A d F  
dx dx p(x) = --+- (M,  > l) ,  

whereas in subsonic flow these quantities are related by the Cauchy-Hilbert integral 

Let us assume that the pressure far from the interaction region is given by the 
power-law distribution 

p(x+ co) - d x @ ,  ( 2 4  

p(x+--oo) - d ( - x ) @ .  (2 b)  

Here a denotes a measure for the distortion of the surface to be given in (3). The 
constants D and D which are different in the case of sub- or supersonic flow will be 
presented in (4). A simple example of a body contour producing such a pressure 
distribution consists of a flat plate upstream of the interaction region and of a power- 
law profile downstream of it : 

F(x+ a) - ax@+’, P(x+-m) = 0. (3) 
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In  the case of supersonic flow (1 f )  predicts a non-zero pressure distribution for 
x+oo only: 

Evaluation of (19) for the same profile yields the coefficients of the pressure 
distribution (2) in subsonic flow: 

D = P + l ,  D = O  (M,> l ) .  ( 4 4  

This result, obtainable by means of complex variables or Fourier transform theory, 
is applicable only if the exponent P is non-integer. An additional constraint /3 > - 2 
is necessary also, since a hump or an indentation or an equivalent distortion of the 
displacement thickness caused by the nonlinear interaction process in the region 
x = O(1) produces a contribution of O ( ~ X I - ~ )  to the far field of the pressure according 
to ( I d .  

Then the question arises of whether it is possible to specify unique similarity 
solutions to the lower-deck equations. As a first step let us discuss the behaviour of 
the flow quantities far downstream where the pressure is given by (2a).  The 
appropriate similarity form for the stream function Y is found to be 

Y(X+ co , y) -N b2 + axSf (7 )  + ~(axfld) + O(a2x21+) ( 5 4  

with the similarity variable 
7 = y / x t  

For the velocity components and the shear stress we obtain (a prime denotes d/dy) 

and 

Substitution of (5c) into ( 1  e )  yields 

A ( x +  00)  -N a K l x f 1 4  with K ,  = f ’ ( ~ +  a). (6) 

This displacement thickness causes a pressure response of O(axfl4) which gives rise 
to the corresponding term in (5a).  The details of a general continuation of the 
expansion (5a) are omitted here, but the last term, O(a2x21+) -evoked by the 
nonlinearity of the momentum equation (1 b)  - shows that the leading term axflf(7) 
gives the correct asymptotic description for x +  00 if /3 < Q .  Therefore = Q represents 
an upper limit where the validity of (5 ) ,  (6) is restricted to small disturbances 
a < 1. No similarity solution can be found for pressure distributions (2) with /? > Q and 
even a solution to the triple-deck equations seems not to exist in this case, as will be 
shown later (see $ 5 ) .  

Substituting ( 5 )  into the equation of motion (1 b)  and retaining the highest-order 
terms only leads to the linear ordinary differential equation 

f”‘+kl”f”-B(?lf’-f)-Po = 0, (7) 
where the constant /3D characterizes the magnitude of the pressure gradient 
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following from (2) and (4). The no-slip condition a t  the wall ( l c )  together with (5c)  
and ( 5 d )  requires 

The demand for a finite displacement thickness leads to the third boundary condition 

already formulated in (6). 

f(0) = f ' ( O )  = 0. (9a) 

f ' (q+ co) - K , + o ( l ) ,  (9b) 

An asymptotic expansion of the differential equation (7)  in the limit 7 --f oc) , 

f ( 7  + co ) - D + K ,  7 + K ,  7,131 + K ,  1;1-38-4 e-73/9 + ... for p =!= 4, 
f(r+co) - D + K ~ ~ + K , ~ I ~ ~ + K ~ ~ - ~ ~ - ~ ~ ~ ~ +  ... for p = Q ,  (lob) 

(10a) 

shows that the boundary condition (9b) is always satisfied for /3 < i and therefore a 
unique solution of the boundary-value problem (7) ,  (9) can only be specified in the 
case p > f .  One might argue that only on profile contours ( 3 )  with p > Q  is the 
downstream acting pressure gradient (8) strong enough to determine the similarity 
solution ( 5 )  in a definite way. As shown in the next section, however, i t  will be 
possible to decrease this lower bound for the exponent ,8 by formulating a stronger 
outer constraint for f(7 -t co) replacing condition (9b). 

For completeness it should be noted that more general pressure distributions than 
(2) including logarithmic terms p - cLDxa(ln x ) ~  in general lead to modified expressions 
(5 )  of the form @ - &2+axp(lnx)bf(7). One important exception is the ramp 
geometry ((3) with p = 0) in subsonic flow where the pressure p - -(a/n) lnlxl, as 
1x1 + co, leads to the similarity structure $ - &iz + af(7) containing no log terms. In  
this case the governing equation f "' +if"$ + l/n = 0 has the asymptotic expansion 
f - ( 3 / n )  In 7 + K ,  7 + K ,  +K3 7-4 e-73/9 also differing from (10). 

3. The determination of unique similarity solutions 
Let us now turn to the discussion of the flow properties far upstream of the 

interaction region. If a forcing pressure term is present for x -+ - 00, (2 b) ,  the stream 
function can be expressed in a form analogous to ( 5 ) :  

Y(z+- 03, y) - +y2 +a( -x)Pf(~)  + . . . with 7 = y/( - x)'. (11)  
Of course, such a non-vanishing pressure distribution exists in subsonic flows but also 
in supersonic motions along non-flat body profiles with F ( z +  - 00) + 0. The function 
AS) satisfies the differential equation 

and, for large 7, is thus given by 

f(7+ co) - D +K, q+K, 738+R3 ~ 3 8 - 4  e-7'/9 + ..., (13) 
except for p = Q, where the same If, q l n 7  term appears as in (lob). Expansion (13) 
contains an exponentially growing term as f+ 00 which is inadmissible. Hence the 
boundary-value problem for f(7) - consisting of (12), the wall boundary conditions 
(9a) and the requirement for the disappearance of the exponentially increasing 
complementary function as a third boundary condition in the limit 7-+ 03 - always 
yields unique solutions, independent of the value of the exponent p. These unique 
similarity solutions for x - t -  00 are well known in the triple-deck literature (cf. 
Brown & Stewartson 1970, eq. (5 .3 ) ;  Smith & Merkin 1982, eq. (2.2a, b)).  

If (13) and (10) - valid far upstream and downstream - are inserted into the 
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similarity expansions (11) and (5), respectively, it is seen that the terms K,T38 and 
K,q38 produce a contribution of O(y38) to the stream function Y(x, y+ a). This 
indicates that the two disturbances (for x+- co and x+ GO) can be connected by an 
expansion of the stream function at  the outer edge of the lower deck: y-f GO. By 
insertion of terms of the form y'(1n y)8Fr,(o) into the nonlinear momentum equation 
(1 b )  and the relation (1 e) and retaining the highest-order terms in y only we get 

!P(x,y-fco) - i [~+A(x) ]~+p(x )+K, ,y~( lny )~+  ... with r < 2. (14) 

This expansion, which is valid for all x, contains the pressure p ( x ) ,  the displacement 
function A ( x ) ,  free constants K,, but no arbitrary functions Fr,(z). If (14) is carried 
on to higher orders the coefficients K,, are no longer constants but again they are 
functions of p ( x )  and A ( x )  only. Hence it is possible to transfer information from the 
upstream region into the wake downstream and to formulate a new outer boundary 
condition for the boundary-value problem (7), (9) independently of the nonlinear 
interaction process which takes place in the region x ,y  = O(1). (Special applications 
of (14) can be found for example in Smith 1977, eq. (2.5b), with one minor misprint: 
D, should be replaced by [I@,A(x)+D,]; Smith & Merkin 1982, eq. ( 2 . 2 d ) ) .  

In the case of supersonic flow past profiles consisting of a flat plate far upstream, 
(3), the similarity solution (11) yields only the trivial solutionf(7) = 0 owing to the 
vanishing pressure distribution p(z+  - 00) = 0. The asymptotic structure of the 
flow for x+ - co is given by the linearized form of the free-interaction solution first 
obtained by Lighthill (1953). Since this solution shows an exponential decay of all 
field quantities for y+ 00, K2 = 0 in (13) and as a consequence expansion (14) 
includes no algebraic terms in the whole domain of the flow ( - 00 < x < 00)  : 

!P(x,y+ co) - & [ ~ + A ( x ) ] ~ + p ( x ) + o ( y - ~ ) ,  Vr. (15) 

Comparison with (lo), valid downstream, shows that the second complementary 
function must also vanish (K,  = 0) thus leading to the new boundary condition for 
f ( q +  co), replacing (9b): 

With this condition the similarity solution (5), satisfying the boundary-value 
problem (7), (9a), (16) yields unique results for all values of the exponent p. (The 
only exceptions are body contours producing p ( x )  = 0 not only for x -+ - 00 but also 
for o+ 00 ; e.g. a step F ( x )  = &(x), a hump F ( x )  - a+). Here H ( x )  and 6 ( x )  denote 
the Heavisides unit function and Dirac delta function, respectively.) These unique 
results - valid for disturbances a = O( 1) - are in agreement with the asymptotic 
behaviour (x+ 00)  of the full solution of the linearized lower-deck equations for 
a 4 1. This linear solution was first obtained for the corner-flow problem by 
Stewartson (1970, 1971) using Fourier transform theory. Using the same method for 
supersonic flow past general profiles (3) (see Gittler 1985) we get the wall-shear-stress 
distribution (cf. (5e)) 

(17a) 7,(x+ 00) - 1 +aK,x8-i, 

where 

The displacement thickness (cf. (6)) is given by 

A(x+  00) - &,.at, 



I36 Ph. Gittler 

t 

,\\loA - 
-2 -1  0 - 1  0 -0.5 

A 

0.5 0 0.5 

I 

FIGURE 1. Disturbance of the u-component (equation (5c)) downstream on a profile (3) for 
different values of 8: (a) = 4, ( b )  0, (c) -i, ( d )  -1. 

with 

These results are valid for /3 + - 1 --n, nEN, only. (For example, the special case 
p = -2, corresponding to a body contour characterized by F(x+ 00) - ax-l, leads to 
the asymptotic relationship for the wall-shear stress distribution 

where $ ( z )  = d/dzlnT(z) denotes the digamma function. This example showing 
the appearance of a ln-term explains the singularities in the solution (17) for 
f i = - l - l n ,   EN). 

As mentioned above, these asymptotic results due to linear theory (a -4 1)  are in 
complete agreement with the similarity solution for a = O( l ) ,  equation (5) .  This was 
checked by solving the boundary-value problem (7),  (9a), (16) analytically, yielding 
identical results:f”(O) = K, andf’(co) = K , ,  see Gittler (1985). Some of these results 
for the disturbances of the u-componentf’(7) (equation (5c)) are displayed in figure 
1. For the step-profile (figure 1 d )  the velocity distribution f ’ (7)  is a solution of the 
differential equation (7) with fiD = 0 and p = - 1,  together with conditions (9a)  and 
a specified value f”(0) as a third inhomogeneous initial condition taken from the 
linear solution. If a > 0 the similarity profiles show a retardation of the whole 
boundary-layer flow for ,4 = and fi = 0 (ramp), whereas supervelocities appear in 
the vicinity of the wall if p < -;owing to the favourable pressure gradient (cf. ( 1 7 4 ) .  
Downstream of a step we obtain positive velocity disturbances throughout the whole 
boundary layer with a pronounced maximum near the wall. 

For supersonic motions along non-flat wall shapes ( F ( x 4 -  co) + 0) and in all 
subsonic flows the same condition K ,  = K, (cf. the left-hand side of (16)) is sufficient 
to determine a unique similarity solution valid downstream. In all these cases the 
coefficient x, of the algebraic term in the expansion (13) (provided by the upstream 
solution, (II) ,  (12)), is non-zero and corresponds to a term O(y3p) which appears in 
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the wall layer of the boundary-layer flow approaching the interaction region (cf. 
Brown & Stewartson 1970) and which persists in the main deck of the triple-deck 
structure (Y --f 0) for all z. 

To decide, whether these unique results are indeed the leading term of the 
asymptotic structure for x + co , it is necessary to consider the possible occurrence of 
homogeneous eigensolutions. For that purpose we extend (5) : 

Y(z+Co,y) - & 2 +  adf(7)+Cx%(7)+ ..., 7 = y/&. (19) 

h”’+h2h”-h(yh’-h) = 0, (20a) 

h(0)  = h’(0) = 0. (20b) 

If h”(0) = 1 (204 

The function h(7)  satisfies the homogeneous differential equation (cf. (7), (9)) 

subject to the initial conditions 

is chosen as a third initial condition, the solutions of the initial-value problem (20) 
exhibit the asymptotic behaviour (cf. (10)) 

h(7 --f co ) - K ,  7 + K ,  73A + K, 7-3A-4 e-1”~ + ..., (21) 

with the value of the coefficient K2 being a function of h only: K ,  = K,(h).  

properties (see Abramowitz & Stegun 1970) yields 
Solving (20) by means of hypergeometric functions and using their asymptotic 

T(%) 3-2”; 
K -  

- (3h - 1) T(h + 1) ‘ 

Since the occurrence of any eigensolution is caused by the interaction process in the 
region z = O( 1) without any accompanying forcing pressure gradient, they must not 
include algebraic terms for y+  00, i.e. K2 = 0. Therefore, the zeros of (22) determine 
the spectrum of the eigenvalues hk, which corresponds to the negative integers : 

h k  = -k, kEN. (23 1 
The eigenfunctions hk( 7) have to satisfy the orthogonality condition 

where &k, denotes the Kronecker delta and Rk is an appropriate real number. The 
derivatives of the first ten eigenfunctions hk(q), corresponding to the velocity 
disturbances u N Ck xAk-ih;(7) ,  are depicted in figure 2. Finally it should be mentioned 
that no eigensolutions governed by the homogeneous form of (12) with D = 0 can 
appear in the upstream region for x + - co . This is quite clear for physical reasons and 
can be proved analytically. 

In  supersonic flow the contribution of the first eigenfunction 

C1z-’hl(7), with h1(7)  = I re-s31sds, 
L J o  

forms the leading term of the expansion (19) downstream of a profile (3) with /3 < - 1. 
Apart from the unknown coefficient C, this first eigensolution is identical with the 
linear solution downstream of a step in supersonic flow (figure Id) .  Since the 
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FIGURE 2. Derivatives h;(r]) of the first ten homogeneous eigenfunctions, corr,esponding to the 
velocity disturbances u(x+ 03, y) - C',Z-'-%~(T), with 7 = y/xs. 

coefficient C, cannot be predicted in advance, we are now finally able to define the 
interval for the exponent /3 in which a similarity solution (19) can be specified 
uniquely. For two-dimensional supersonic boundary-layer flow we obtain : 

- 1 < / 3 < $ ,  M,>1 .  (26a) 

Therefore we have a uniquely defined asymptotic behaviour downstream along the 
profiles (a) ,  ( b )  and (c) of figure 1,  whereas the amplitude of the velocity disturbance 
for profile ( d )  remains indefinite. 

= - 1 (step profile: 
F(x)  = aH(z)) the expansion takes the similarity form $ - bY2+ax-' lnxf(7) due to 
the confluence of the forcing pressure term and the first eigensolution. (The same 
effect caused the appearance of the logarithmic term in (18)). No subsonic boundary- 
layer flow is possible for /3 = ! since the similarity solution (11)  holding upstream 
contradicts the initial condition of the lower-deck equation (1 d )  in this special case. 
So the range of unique solutions is given by 

In  the case of subsonic motion along a body contour (3) with 

- l < p < $  for M,<1 .  (26b) 

Other pressure-displacement relationships (cf. (if), (1 9 ) )  lead to results which differ 
from the estimates (26a) and (26b). For example in axisymmetric, supersonic flow 
along profiles (3) (cf. Kluwick, Gittler & Bodonyi 1984, 1985) we obtain 0 < /3 < 9 ) .  

Finally we should mention again that for values of p yielding unique solutions 
(26a, b)  the asymptotic behaviour is identical with the results of linear theory in the 
limit II: + 00. (M,  > 1 : equation ( 1  7 )  ; M ,  < 1 : e.g. corner flow problem (p = 0) ,  see 
Stewartson 1970, 1971). 

Before discussing the applications of the results given above it should be 
mentioned that Libby & Fox (1963) calculated eigenfunctions occurring as 
perturbation solutions of the whole Blasius boundary layer. The velocity dis- 
turbances specified by these eigensolutions (Libby & Fox 1963, figure 1 a)  obviously 
have to vanish at the outer edge of the laminar boundary layer, but nevertheless they 
show a strong resemblance to the results depicted in figure 2. Owing to the scaled 
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variable 7 = y / d  the triple-deck eigenfunctions spread out (away from the wall) for 
x+ NI and so t,he transition into the Blasius eigenfunctions downstream of the 
interaction process is evident. 

4. Numerical confirmation and application of the results 

caused by a hump F ( x )  on an otherwise flat surface in supersonic flow: 
Let us consider the elementary, but nevertheless important, interaction process 

F = a(1 -x2)', 1x1 < 1, (27a) 

F =  0, 1x1 > 1. (27 b)  
Since we have no forcing pressure gradient, the leading terms of the expansion for the 
stream function contain homogeneous eigensolutions only : 

Y(x+ 00, y) - % y " +  c, x-1h1(7) + c, x-2h2(7) + . . ., ?j = y/d, (28) 

with h,(y)  given in (25) and h,(7) = k j: ( 18-s3/15) e-ss/s ds. 
Nonlinear terms - starting with Ci x-yi(q) ,  where fi(7) is governed by an 

inhomogeneous boundary-layer problem - and other higher-order terms are omitted 
here. For small disturbances, a < 1 ,  linear theory (e.g. Smith 1973) yields 

hence it follows that 7,- 1 = O(x-1) and A = O ( x f )  for z-t 03, cf. (5) and (6). 
To show the appearance of the first eigenfunction (C, 4 0) in the wake downstream 

of a nonlinear interaction process (a = O(1)) the lower-deck equations had to be 
solved numerically. The system of equations and boundary conditions ( 1  a-f ), (27) 
was cast into finite-difference form using centred differences in the normal direction 
and the implicit Crank-Nicolson scheme of second order for the streamwise direction. 
An automatically working shooting algorithm (see Daniels 1974 ; Gittler & Kluwick 
1987) yields a solution in which the occurrence of an expansive or compressive 
eigensolution is pushed downstream as far as possible. This shooting method - 
working in supersonic flow only - needs no information about the behaviour of the 
field quantities for x-+ 00, thus yielding accurate results far downstream which can 
be used to check the validity of the asymptotic expansion (28). To establish the 
asymptotic structure in the numerical results it was necessary to increase the 
accuracy of the computations considerably. At every x-station the Newton iterations 
had to be repeated until the corrections of all field quantities were less than 
(instead of the usual value of lo+'). Typical step sizes are Ax = 0.05 and Ay = 0.2. In 
order to pursue the calculations further downstream it was found necessary to restart 
the shooting algorithm at a suitably chosen x-station by interpolation between the 
two diverging compressive and expansive solutions (for example, near z = 14 in 
figure 3). 

The displacement thickness A(x)  turned out to be the most useful field quantity for 
calculating the coefficients C, and C, in (28). The asymptotic expansion of A ( s )  
according to (28) is given by 

(30) A (x -+ 00 ) N A,( 1 +a, d) sf +A,( 1 + a, d)  xs + . . . , 
where 

and a, = - 10r(8)/3i, a2 = 2a,. 
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FIGURE 3. Displacement thickness A ( z )  and coefficients C, and C,, according to (28) and (30), 
downstream of a nonlinear interaction process caused by a hump (27) with a = 1, in supersonic 
flow; c denotes compressive free interaction ; e denotes expansive free interaction. 

The pressure distributions evoked by the eigenfunctions h, and h, in (28) give rise 
to the additional terms containing the coefficients a, and a*. However, since these 
disturbances do not cause contributions to the displacement thickness, the process 
terminates and no further terms appear inside the parentheses of (30) in the case of 
supersonic flow. 

In  connection with (30) and its first derivative, the numerical results for A(x)  and 
A'(x) can be used to determine the coefficients C, and C2, which are depicted in figure 
3 for the case a = 1 .  As can be seen in this figure, C, and C,, both approach constant 
values, which confirms the asymptotic structure (28) holding downstream. These 
computations were repeated €or different values of a and the results are shown in 
figure 4. For la1 4 1 we observe the linear variation of C, given in (29) but for all 
values of a =I= 0 we obtain a non-zero coefficient C,. Therefore, in contrast to linear 
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theory, the asymptotic behaviour of the field quantities far downstream is always 
dominated by the first, slowest decaying eigensolution whose amplitude C, cannot be 
predicted in advance without having obtained a full numerical solution of the 
problem. 

It is interesting to note that the structure of the wake is characterized by C, < 0, 
as can be seen in figure 4. Therefore, an observer located far downstream cannot 
decide whether the boundary layer has been disturbed by a hump (a > 0) or an 
indentation (a < 0), at least in the interval -3  < a < + 1. 

Before closing this section let us briefly outline some possible applications of the 
results discussed so far. 

(i) The nonlinear interacting boundary-layer flow over a ramp (/3 = 0, corner flow 
problem) was studied first by Rizzetta, Burggraf & Jenson (1978), and Smith & 
Khorrami (1991) and Smith & Merkin (1982) for supersonic and subsonic Mach 
numbers, respectively. Using the asymptotic behaviour given by the uniquely 
determined similarity solutions in this case it seems possible to improve the accuracy 
of the numerical computations for these problems. 

(ii) A number of recent papers describe the interaction of free-stream disturbances 
and boundary-layer flow past an obstacle. In all these 'receptivity problems' it is 
necessary to have a very accurate solution of the steady nonlinear triple-deck flow 
whose stability is investigated. An important point concerning the accuracy of finite- 
difference computations is the handling of the interaction law between the pressure 
and the displacement in incompressible flow ( lg) .  Also, in subsonic motions along 
profiles (3) with /3 < - 1, see (26b) ,  the first eigensolution provides the leading term 
downstream. Therefore in all subsonic interactions evoked by a surface-mounted 
obstacle the far-field tails of the Hilbert integral (1 g) should be evaluated using the 
asymptotic relationship A@-+ co) = O ( d )  instead of the wrong behaviour 
A = O(xf) given by linear theory (see Smith & Bodonyi 1985 and Bodonyi et al. 
1989). 

(iii) Another application concerns the modification of a spectral method for the 
solution of the lower-deck equations. Spectral methods have the important 
advantage of treating reversed-flow regions correctly, without the need for any kind 
of approximation or cumbersome adaptation required in conventional schemes. The 
original version of this method introduced by Burggraf & Duck (1981) can be applied 
only if the transformed variable 

T(w,  y )  = rrn [T(x, y )  - 11 e-'us dx + 0 for w +. o (31 a )  

sufficiently fast so that the contribution for the discretized inverse Fourier integral 
in the interval around w = 0 vanishes, 

F(w, y) ei* dx = 0, E2 
and the point OJ = 0 must be excluded from the computational domain. 

Since the contribution of the first eigenfunction yields T(w+ 0) = O((iw)g) for every 
interaction process, we obtain a non-zero value for the integral (31 b) which is taken 
into account in a modified scheme. As a consequence, the numerical results of this 
modified spectral method automatically exhibit the correct asymptotic properties far 
downstream (see Gittler 1984, 1985). This is shown in figure 5 for the hump profile 
(27) with a = 3 in supersonic flow. The wall shear stress 7, obtained by means of the 
modified spectral method is in very good agreement with the results of the finite- 
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FIQURE 6. Wall-shear-stress distribution T,(Z) for the hump profile (27) with a = 3, in supersonic 
flow: ------, spectral method, Burggraf & Duck (1981); oooooo, modified spectral method, 
Gittler (1984, 1985); - , finite-difference method. 

difference method, mentioned above, whereas the original spectral scheme yields 
positive 7,-disturbances in the upstream interaction region as well as in the wake 
downstream, which are both physically incorrect. In contrast to the original version, 
the modified scheme is also able to cope with boundary-layer interactions induced 
near corners where the transformed quantity T exhibits a singularity 5(0+0) = 
O(( iw) t ) ,  see Gittler & Kluwick (1989) for further details. 

5. Nonlinear similarity solution 
As already mentioned in $2 the value /3 = J, corresponding to the body contour 

F - ad, represents an upper limit for the exponent /3. In this case the two-term 
expansion of the stream function (5a)  is valid for a 4 1 only, since the shear-stress 
disturbances (5e) do not decay for z+ m but remain constant. As might be expected, 
it is possible to construct a nonlinear similarity solution of the interaction process in 
this special case. 

The appropriate asymptotic form for the stream function is 

yl(x+ a 9 Y) - &q), T = y/xi. 
With the field quantities 

and the prescribed pressure 

the momentum equation (1 b)  and the conditions (1 c) and (1 e) take the form 

p - agxi 

g’’’+2g ’ L & ’ 2 - - ’ O a  = 0, 

g(0 )  = g’(0) = 0, 
3 9  0 

g”(q)+l  as q + a .  

(33) 

The nonlinear boundary-value problem (34) is of the Falkner-Skan type with a novel 
boundary condition (34c )  corresponding to the linear velocity distribution at the 
outer edge of the lower deck, ( 1  e ) .  
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FIGURE 6. Flow structure of a self-induced supersonic separation on (a) a flat plate 
and ( b )  a profile F ( x +  03) - &. 

FIGURE 7. Solution of the boundary-value problem (34): well shear stress T, = g”(0) 
versus a. -----, Linear theory (equation (17a)) with 1 = t ) .  

Before discussing the numerical solution of (34)  let us draw attention to another 
argument leading to the same Ansatz (32a) .  Neiland (1969) and Stewartson & 
Williams (1973) gave an asymptotic description of the self-induced separation of a 
supersonic boundary layer. The multistructured lower deck, shown in figure 6 (a), 
consists of a shear layer of thickness O ( d )  which is centred around the straight 
separation line ys = P x a slow inviscid reversed flow below ys, and a sub-boundary 
layer of thickness O(xs),  which enables the no-slip condition to be satisfied on the 
plate. For the generalized problem of supersonic separated flow along a protile 
F - axk a similar description of the flow field is possible, figure 6 ( b ) .  The thickness 
of the separation region O ( d )  and of the wall boundary layer O(am), which are 
determined by matching arguments, both decrease with increasing values of k > 0. 
An interesting detail of these solutions is the algebraically growing velocity at the 
outer edge of the backward-moving wall layer, a behaviour which was studied first 
by Gajjar & Smith (1983) in the context of hydraulic jumps and hypersonic 
separation. In the limit k +i we get I ,  m + f, so the wall layer, the region of backflow 
and the free shear layer merge and the single expression (32a)  for the asymptotic 
description of the whole flow-field becomes possible, even in the case of separated 
flow. 

Figure 7 shows the calculated wall shear stress 7, =g”(O). Solutions of the 
boundary-value problem (34) exists for a < a,, = 0.30905 only. The occurrence of 
solutions with oscillatory behaviour for a > amax - analogous to the results of Libby 
& Liu (1967) for the Falkner-Skan equation - seems to be impossible for the 
boundary-value problem (34) .  In  the vicinity of the undisturbed state (a = 0, g = ha, 
g”(0) = 1) the linear solution, (17a) ,  7 ,  = l -a lOr( f ) /34 ,  provides a good approxi- 
mation to the nonlinear results. If a > 0, e.g. for compressive flow, the solution 
consists of two branches corresponding to attached and separated flow, respectively. 
In the limiting case a = a,,, the shear stress at the wall vanishes identically. The 

0 ,  ’ 
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FIGURE 8. Velocity distribution g’ (7 )  for various values of a. 
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FIGURE 9. Wall shear stress distribution T&) along the profile P ( z )  = ad in supersonic flow for 
varioua values of OL : - , finite-difference method; ------, nonlinear similarity solution, (32). 

velocity distributions g’(7) for various values of a are depicted in figure 8. Results 
with positive wall shear (g”(0) > 0,O < a < amax) exhibit small velocity disturbances 
near the wall only, while backflow solutions exhibit a rapidly increasing separation 
region for a --f 0 + . 

Finite-difference solutions for supersonic flow along the profile F ( z )  = ax&(z) for 
a = 0.1, 0.2 and 0.3 are displayed in figure 9. As can be seen, the wall shear stress 
reaches constant values downstream, in perfect agreement with the results of the 
nonlinear similarity solution. The numerical results for a = a,, (not depicted in 
figure 9) also show a smooth wall shear stress distribution which is always positive 
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with T,,,+ 0 for x+ 00. For a > a,,, no solutions can be found and thus a global 
change of the flow pattern is expected to take place. Most likely - as indicated by 
numerical solutions - the separation point is pushed upstream a distance which is 
infinite in triple-deck scaling. Thus, one is led to the interesting conclusion that a wall 
of the form 

- 1); (T:/T$)(x*/L*)$ for x* > o (35) 
for x* < 0, 

with a,,, = 0.30905 generates the largest possible deflection of a laminar boundary 
layer in supersonic flow if separation is to be avoided. Here the superscript * 
characterizes dimensional quantities. L* denotes the distance from the leading edge, 
M ,  the free-stream Mach number, TZ and T$ are the free stream and wall 
temperature, respectively, while A is associated with the non-dimensional skin 
friction in the unperturbed laminar boundary layer (for the Blasius boundary layer 
on a flat plate, A = 0.3321). 

The corresponding pressure distribution - producing the sharpest pressure rise ip 
the shortest distance - is given by 

(36) 
p * - p z  - @ m , ~ i ( ~ : / ~ z )  (x*/L*$ for x* > o 
7 T - G  P z  U ,  for x* < 0, 

where p: and u: denote the undisturbed values of the density and velocity, 
respectively. The result (36) was derived in the case of incompressible flow by 
Stratford ( 1954) based on more heuristic arguments in a paper concerning laminar- 
boundary-layer flow near separation. A body contour which produces the pressure 
distribution (36) inside the interaction region in subsonic flow is given by the convex 
profile 

F* -= {  -(2/2/3)am,A~(1-M",);(Tz/T$)(-x*/L*)~ for x* < 0 
L* for x* > 0, 

as can be seen from (2), (3) and (4). Owing to the relation P*(x*) = L$*( -x*) for 
x* > 0 the pressure distribution upstream vanishes identically, making possible the 
existence of a triple-deck flow in this limiting case for a < amax, cf. the remark 
preceding (26 6 ) .  

Finally we would like to show the significance of the present results for the recently 
raised question of a termination of the triple-deck structure for increasing 
disturbances of the flow. For example, the results of Smith & Khorrami (1991) show 
a breakdown of the triple-deck solution for the supersonic ramp flow problem if the 
scaled ramp angle a approaches a critical value a,. This local breakdown ia caused by 
the formation of a singularity in the reversed-flow region. From the findings of this 
section it is clear, however, that separation can be avoided for arbitrary ramp angles 
a if the profile F ( x )  = 0.30905(x-x ): is used to smooth the concave sharp corner in 
the interval between x1 = - 1.082ar and x, = 1.623ai. This yields a wall-shear-stress 
distribution which is positive along the whole contour. This method can be applied 
to all profiles with P < Q .  Therefore, in all these cases the local reversed-flow 
breakdown is removable and we have no finite upper limit for the controlling 
parameter a. This is also in complete agreement with the fact that there always exists 
a unique asymptote for all values of a. 

(37) 
- (1/2/3) amaxAt( 1 -W,);(TZ/T$) (x*/L*); 

2 
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In contrast, a non-local breakdown of the two-dimensional, steady triple-deck flow 
is evoked by the profile (35) (resp. (37) for subsonic flow), only in this case (p  = #) the 
cutoff value a,,, is determined by both the asymptotic solution valid in the far field 
and the full numerical solution of the triple-deck equations. Therefore, the breakdown 
of the interacting laminar-boundary-layer approach for a 2 amax, /3 = $ or p > $, 
respectively, is of a global form which cannot be removed or avoided. 

The author is grateful to Professor A. Kluwick, Vienna, for helpful comments and 
interesting discussions during preparation of this work. 
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